{ "cells": [ { "cell_type": "markdown", "id": "3d414aea-64bd-488f-a12f-10c36f4fd3db", "metadata": {}, "source": [ "### Plotting signals" ] }, { "cell_type": "markdown", "id": "4a02a9cb-ce4d-4faf-902d-c67e0cb04433", "metadata": {}, "source": [ "Hopefully, based on the principles of the framework, `.plot` should be available to all the subclasses. " ] }, { "cell_type": "code", "execution_count": 1, "id": "81b22b8f-b20c-4d37-ab0c-8c2b55c7335b", "metadata": {}, "outputs": [], "source": [ "from modusa.generators import AudioWaveformGenerator # Using this to generate audio signal for testing" ] }, { "cell_type": "code", "execution_count": 2, "id": "a7546c53-80ae-4878-9331-bb2a1048b8b3", "metadata": {}, "outputs": [], "source": [ "signal1 = AudioWaveformGenerator.generate_sinusoid(A=1, f=5, phi=0, sr=100, duration=5)\n", "signal1.title = \"Sinusoid 1\"" ] }, { "cell_type": "code", "execution_count": 6, "id": "29770e9b-ee32-457b-bf4b-a5e62e99b460", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAC+CAYAAAAx+P0hAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAP75JREFUeJzt3Xl4VOXd//FPgJAQyEIgQICEJQkIjhAQWX+yKCiKUqzaFq0FqVatoIjaFquAKypqVWxFRQt6PS7VR6gWF7SAqKDIEnEQaRIJicoqJAEmG8n8/qDMYyAJM+HMPfck79d1zXUlZ87yub/MOSfzncOZCK/X6xUAAAAAAAAAAKhRk1AHAAAAAAAAAADAZjTSAQAAAAAAAACoA410AAAAAAAAAADqQCMdAAAAAAAAAIA60EgHAAAAAAAAAKAONNIBAAAAAAAAAKgDjXQAAAAAAAAAAOpAIx0AAAAAAAAAgDrQSAcAAAAAAAAAoA400gEAAIBT1LVrV02ePDnUMfy2aNEiRUREKC8v76TzhtvYAAAAgGCgkQ4AAADU4quvvtJll12mLl26KDo6Wp06ddKYMWM0f/78UEezzmuvvaZf//rXysjIUEREhEaOHBnqSAAAAIBjIrxerzfUIQAAAADbrFmzRqNGjVJqaqomTZqkDh06qKCgQJ999plyc3OVk5Pjm7esrExNmjRRZGRkCBP7r7KyUhUVFYqKilJERESd83bt2lUjR47UokWL6pxv5MiR2rBhg8466yxlZWWpT58+WrVqlXOhAQAAgBBqFuoAAAAAgI3uv/9+xcfH64svvlBCQkK15/bs2VPt96ioKIPJTl3Tpk3VtGlTR9f50ksvqVOnTmrSpIlcLpej6wYAAABCjVu7AAAAADXIzc3V6aeffkITXZLatWtX7ffj7yN+7B7kn376qWbMmKGkpCS1bNlSl1xyifbu3Vtt2YiICM2ZM+eEbRy/zoqKCt19993KyMhQdHS02rRpo//3//6fPvjgg2rLrVixQmeffbZatmyphIQE/exnP9PWrVurzVPTPdK9Xq/uu+8+de7cWTExMRo1apS2bNlSd5F+IiUlRU2a8PYCAAAADRN/6QIAAAA16NKlizZs2CC3213vdUybNk1ffvmlZs+erRtuuEFvv/22pk6dWq91zZkzR3fffbdGjRqlp556Sn/+85+VmpqqjRs3+ub58MMPdf7552vPnj2aM2eOZsyYoTVr1mjYsGEn/WLRWbNm6a677lLfvn01b948de/eXeedd54OHz5cr7wAAABAQ8KtXQAAAIAa3HbbbbrggguUmZmpgQMH6uyzz9a5556rUaNG+X0v9DZt2mj58uW++5BXVVXpySefVFFRkeLj4wPKs2zZMl144YV69tlna53n9ttvV2JiotauXavExERJ0oQJE9SvXz/Nnj1bixcvrnG5vXv36uGHH9a4ceP09ttv+/L++c9/1gMPPBBQTgAAAKAh4op0AAAAoAZjxozR2rVrNX78eH355Zd6+OGHdf7556tTp0566623/FrH7373u2pf5nn22WersrJSO3bsCDhPQkKCtmzZouzs7Bqf37lzp7KysjR58mRfE12S+vTpozFjxuidd96pdd0ffvihysvLNW3atGp5p0+fHnBOAAAAoCGikQ4AAADU4qyzztKbb76pAwcOaN26dZo5c6YOHjyoyy67TF9//fVJl09NTa32e+vWrSVJBw4cCDjLPffco8LCQvXo0UNnnHGGbr/9dm3evNn3/LHmfM+ePU9YtlevXtq3b1+tt2k5tmxGRka16UlJSb7MAAAAQGNGIx0AAAA4iebNm+uss87SAw88oKeffloVFRV6/fXXT7pc06ZNa5zu9XpPumxlZWW134cPH67c3Fy98MILcrlcWrhwofr376+FCxf6NwgAAAAA9UYjHQAAAAjAgAEDJB29lYoTWrdurcLCwmrTysvLa1x/YmKirr76ar3yyisqKChQnz59NGfOHElHvxxVkrZt23bCct98843atm2rli1b1pjh2LLH3zZm79699bp6HgAAAGhoaKQDAAAANVi5cmWNV44fu9d4TbdQqY+0tDStXr262rRnn332hCvSf/zxx2q/t2rVSunp6SorK5MkJScnKzMzU4sXL67WmHe73Vq+fLkuvPDCWjOMHj1akZGRmj9/frUxP/744/UcFQAAANCwNAt1AAAAAMBG06ZNk8fj0SWXXKLTTjtN5eXlWrNmjV577TV17dpVV199tSPbueaaa3T99dfr0ksv1ZgxY/Tll1/q/fffV9u2bavN17t3b40cOVJnnnmmEhMTtX79er3xxhuaOnWqb5558+bpggsu0JAhQ/Tb3/5WJSUlmj9/vuLj431XrtckKSlJt912m+bOnauLLrpIF154oTZt2qR33333hBy1Wb16te8Dgb179+rw4cO67777JB29Lc3w4cMDrAwAAABgDxrpAAAAQA0eeeQRvf7663rnnXf07LPPqry8XKmpqfr973+vO++8UwkJCY5s59prr9X27dv1/PPP67333tPZZ5+tDz74QOeee261+W666Sa99dZbWr58ucrKytSlSxfdd999uv32233zjB49Wu+9955mz56tWbNmKTIyUiNGjNBDDz2kbt261ZnjvvvuU3R0tBYsWKCVK1dq0KBBWr58ucaNG+fXOFasWKG777672rS77rpLkjR79mwa6QAAAAhrEV5/vukIAAAAAAAAAIBGinukAwAAAAAAAABQBxrpAAAAAAAAAADUgUY6AAAAAAAAAAB1oJEOAAAAAAAAAEAdaKQDAAAAAAAAAFAHGukAAAAAAAAAANShWagDmFRVVaUffvhBsbGxioiICHUcAAAAAAAAAMB/eb1eHTx4UB07dlSTJnZdA96oGuk//PCDUlJSQh0DAAAAAAAAAFCLgoICde7cOdQxqgmrRvrq1as1b948bdiwQTt37tSSJUs0YcIEv5ePjY2VdPQfIi4uLkgpAQAAAAAAAACBKi4uVkpKiq+Pa5OwaqQfPnxYffv21ZQpU/Tzn/884OWP3c4lLi6ORjoAAAAAAAAAWMjG23LbdaOZk7jgggt033336ZJLLgl1lBN4PB6tW7dOHo8n1FEaDWpuHjU3i3qbR83No+bmUXPzqLl51Nws6m0eNTePmptHzc2j5mZR7/ATVlekB6qsrExlZWW+34uLi4OyHY/Ho8zMTGVnZysjI0NZWVmKiYkJyrZwFDU3j5qbRb3No+YnsX+/dOiQo6v0lJRo7Nix2p6Xp25du+q9995TTIsWjm4D1VHzk2jVSkpMdHSVHFvMo+ZmUW/zqLl51Nw8am4eNTeLeoenBt1Inzt3ru6++27H1+vxeOR2u+VyuRQTEyO3263s7GxJUnZ2ttxutwYOHHjCfKg/f2rucrmot4OouXk/rTnHFTOouZ/275dmzZL27Tul1VRUVqqoqEjx8fGKbNpUnv37dX1e3tEn8/LkmTZNMYmJJ8yH+qPmAWrbVrrnnlNqpnP+NI+am8f50zxqbhbv+c3jWG4eNTePY7mf9u8PdYJaNehG+syZMzVjxgzf78duVn8qavrEyOVyKSMjwzfN5XLxyZKD/Kl59+7dqbeDqLl5x9d8zZo1HFeCjJoH4NCho030mJijj3ooP3JEr7zyioqKixUfF6eJEycqLiFBFXFxvmlx3burXDphvubNGvSfK0FDzQPk8Rx9nR86VO9GOudP86i5eZw/zaPmZvGe3zyO5eZRc/M4lvsv4vDhUEeoVYN+lxQVFaWoqChH11nbJ0ZZWVnVPjFat25djfMhcP7UvLZ5UD/U3Lzj6/ntt99yXAkyal4PMTFSfHy9Ft37ww8q+O8t1oqLi7W3rEydOnbUxOuu0969e5WUlKTmkZH6vqb52rRxbAiNCTWvh1O8PyXnT/OouXmcP82j5mbxnt88juXmUXPzOJY3DGH1ZaM2OPYJnSTfJ0aSFBMTo4EDB/o+KaptPgTOn5pTb2dRc/NqqifHleCi5mYlJSUpsXVrSVJi69ZKSkqSJDWPjFSnjh3VPDKyzvkQOGpuHudP86i5eZw/zaPmZvGe3zyO5eZRc/M4ljcMEV6v1xvqEP46dOiQcnJyJEn9+vXTY489plGjRikxMVGpqaknXb64uFjx8fEqKipSXFxcvXP4e78i7mvkHH9qSb2dRc3No+bmUXM/5edLf/jD0ftH1/OKdEkqr6iodiX0qc7X4HTtKg0fLnXuLLVseXTaP/8prVtX71VS8wAUFR29tcvDD0t+/F1ZG44r5lFz86i5edTcLN7zm8dr3Dxqbh4198/BLVsU53Kdcv82GMKqkb5q1SqNGjXqhOmTJk3SokWLTrq8U410AAAaFYca6TiJoUOlsWOPfrnOsavCT7GRjgA41EgHAAAAUH82N9LD6h7pI0eOVBj1/QEAAPy3adPRpnmrVtLtt4c6DQAAAADgJ7hHuh88Ho/WrVsnzyl+AZVT62kMqLlZTtaJmvuHmptHzc0rr6jQ9z/8oPKKCivWY72SEunIkVNaBTU3i+OKedTcPGpuHu+FzKPm5lFzsziWm0fNGyYa6Sfh8XiUmZmpQYMGKTMzs94vWqfW0xhQc7OcrBM19w81N4+am1deUaGFCxfq74sWaeHChfVuyDq1nsaAmpvFccU8am4eNTeP90LmUXPzqLlZHMvNo+YNF430k3C73crOzpYkZWdny+12h3Q9jQE1N8vJOlFz/1Bz86i5eXv37tX+AwckSfsPHNDevXtDup7GgJqbxXHFPGpuHjU3j/dC5lFz86i5WRzLzaPmDReN9JNwuVzKyMiQJGVkZMjlcoV0PY0BNTfLyTpRc/9Qc/OouXlJSUlKbN1akpTYurWSjn15ZojW0xhQc7M4rphHzc2j5ubxXsg8am4eNTeLY7l51LzhivA2om/vLC4uVnx8fMDf+urxeOR2u+VyuRQTE1Pv7Tu1nsaAmpvlZJ2ouX+ouXnU/BTk50t/+IPUtq0UH+/3YuUVFdq7d6+SkpLUPDKy3pt3aj1hIyHh/75s9J//PPoFpH6i5qegqEjat096+GEpNdWvRTiumEfNzaPm5vFeyDxqbh41N4tjuXnUvP4ObtmiOJcr4P6tCTTSAQBA3erZSEeAeveWxo6VmjSR/ntFuA4dksrKpIIC6fXXQ5uvoatHIx0AAACAs2xupDcLdQAAAABIioqS2rSpPq1Vq6OPoqLQZAIAAAAASKpnI72wsFBvvPGGcnNzdfvttysxMVEbN25U+/bt1alTJ6czAgAANHybNh19AAAAAACsE3AjffPmzRo9erTi4+OVl5ena6+9VomJiXrzzTeVn5+vF198MRg5AQAAAAAAAAAIiSaBLjBjxgxNnjxZ2dnZio6O9k2/8MILtXr1akfDAQAAAAAAAAAQagE30r/44gtdd911J0zv1KmTdu3a5UgoAAAAAAAAAABsEfCtXaKiolRcXHzC9P/85z9KSkpyJFQoeTweud1uuVwuxcTENLjt2Yiam0fNzTNZA+rNazxoysokj6fGp8orKvTjjz+qTZs2ah4ZGfQoprdnI2rusLKyk87CscU8zp9m8Ro3j5qbR83No+bmUXPz+JulcQi4kT5+/Hjdc889+sc//iFJioiIUH5+vv74xz/q0ksvdTygSR6PR5mZmcrOzlZGRoaysrKC+oI0vT0bUXPzqLl5JmtAvXmNB0V0tBQXJ5WWSpWVJzxdceSI/rl0qYoOHlR8bKwmTJigyGb1+j5zv5jeno2oeRAcOXL0df6TWxf+FMcW8zh/msVr3Dxqbh41N4+am0fNzeNvFmd5a/l73AYBvwN69NFHddlll6ldu3YqKSnRiBEjtGvXLg0ZMkT3339/MDIa43a7lZ2dLUnKzs6W2+3WwIEDG8z2bETNzaPm5pmsAfXmNR4UrVpJF1wgNW9eY5MxZ+tWLXjppaO/HDwo18CB6tWrV9DimN6ejah5EJSWSuXlR1/vNeDYYh7nT7N4jZtHzc2j5uZRc/OouXn8zeKwli1DnaBWATfS4+Pj9cEHH+iTTz7R5s2bdejQIfXv31+jR48ORj6jXC6XMjIyfJ/quFyuBrU9G1Fz86i5eSZrQL15jQdNixZSbGyNjfSu/fopLiVF+QUFSk1JUdd+/Wq9qtcJprdnI2oeBKWl0sGDtT7NscU8zp9m8Ro3j5qbR83No+bmUXPz+Jul8Yjwer3eUIcwpbi4WPHx8SoqKlJcXFyN83AfKfOouXnU3Dzul2YWr3GHeTzS6tW1NtIlqaS0VLk5OUpLT1cLAw1W09uzETV32LFG+vDhUi37MccW8zh/msVr3Dxqbh41N4+am0fNzeNvFucU79ql+OTkOvu3oeJXI/3JJ5/0e4U33XTTKQUKJn8a6QAA4Dh+NNKBsOdHIx0AAABAcNncSPfr1i5/+ctfqv2+d+9eeTweJSQkSJIKCwsVExOjdu3aWd1IBwAAAAAAAAAgUE38mWn79u2+x/3336/MzExt3bpV+/fv1/79+7V161b1799f9957b7DzAgAAAAAAAABglF+N9J+66667NH/+fPXs2dM3rWfPnvrLX/6iO++809FwAAAAAAAAAACEWsCN9J07d+rIkSMnTK+srNTu3bsdCQUAAAAAAAAAgC0CbqSfe+65uu6667Rx40bftA0bNuiGG27Q6NGjHQ0HAAAAAAAAAECoBdxIf+GFF9ShQwcNGDBAUVFRioqK0sCBA9W+fXstXLgwGBkBAAAAAAAAAAiZZoEukJSUpHfeeUf/+c9/9M0330iSTjvtNPXo0cPxcAAAAAAAAAAAhFrAV6Qf06NHD40fP17jx48P2ya6x+PRunXr5PF4Qh2lGltzOcHGsdmYyUk2js/GTE6ycXw2ZnKSjeOzMZOTSkpL5Xa7VVJaGuooPjZmcoqNY7Mxk5Ns3IdtzOQkG8dnYyYn2Tg+GzM5ycbx2ZjJKbaOzdZcTrBxbDZmcpKN47Mxk5NsHJ+NmRqigK9InzJlSp3Pv/DCC/UOY5LH41FmZqays7OVkZGhrKwsxcTEhDqWtbmcYOPYbMzkJBvHZ2MmJ9k4PhszOcnG8dmYyUklpaW6YuJE5RcUKDUlRS+/8opaREeTKUhsHJuNmZxk4z5sYyYn2Tg+GzM5ycbx2ZjJSTaOz8ZMTrF1bLbmcoKNY7Mxk5NsHJ+NmZxk4/hszNRQBXxF+oEDB6o99uzZoxUrVujNN99UYWFhECIGh9vtVnZ2tiQpOztbbrc7xImOsjWXE2wcm42ZnGTj+GzM5CQbx2djJifZOD4bMzkpNydH+QUFkqT8ggLl5uSEOJGdmZxi49hszOQkG/dhGzM5ycbx2ZjJSTaOz8ZMTrJxfDZmcoqtY7M1lxNsHJuNmZxk4/hszOQkG8dnY6aGKuAr0pcsWXLCtKqqKt1www1KS0tzJJQJLpdLGRkZvk9rXC5XqCNJsjeXE2wcm42ZnGTj+GzM5CQbx2djJifZOD4bMzkpLT1dqSkpvquR09LTQx3JykxOsXFsNmZyko37sI2ZnGTj+GzM5CQbx2djJifZOD4bMznF1rHZmssJNo7NxkxOsnF8oc5UVVWl8vLyoK0/IyNDI0aMUF5enrp27aqMjAyVhvhWhzZmqktkZKSaNm0a6hj1EuH1er1OrGjbtm0aOXKkdu7c6cTqgqK4uFjx8fEqKipSXFycPB6P3G63XC6XVf/lwdZcTrBxbDZmcpKN47Mxk5NsHJ+NmZxk4/hszFRvHo+0erUUGyv99/YdJaWlys3JUVp6ujW39LAxk1NsHJuNmU5Jaal08KA0fLgUE2PlPmxjJifZOD4bMznJxvHZmMlJNo7PxkxOsXVstuZygo1jszGTk2wcX6gylZeXa/v27aqqqgrqdqqqqlRRUaHIyEg1aVLvr590lI2Z6pKQkKAOHTooIiLihOeKd+1SfHKyr39rE8ca6e+8844mTZqkvXv3OrG6oDi+kQ4AAPxQQyMdaHCOa6QDAAAgfHi9XuXn56uiokIdO3YMi2ZyY+T1euXxeLRnzx4lJCQoOTn5hHlsbqQHfGuXGTNmVPvd6/Vq586dWrZsmSZNmuRYMAAAAAAAAAA4mSNHjsjj8ahjx47WXJmPmrVo0UKStGfPHrVr1y6sbvMScCN906ZN1X5v0qSJkpKS9Oijj2rKlCmOBQMAAAAAAACAk6msrJQkNW/ePMRJ4I9jH3ZUVFQ07Eb6ypUrg5EDAAAAAAAAAOqtpntuwz7h+u8U8A2DzjnnHBUWFp4wvbi4WOecc44TmQAAAAAAAAAAsEbAjfRVq1apvLz8hOmlpaX6+OOPHQkFAAAAAAAAAI1dRESEli5dGuoY1ZwsU15eniIiIpSVlWUskwl+39pl8+bNvp+//vpr7dq1y/d7ZWWl3nvvPXXq1MnZdAAAAAAAAADQQO3du1ezZs3SsmXLtHv3brVu3Vp9+/bVrFmzNGzYMO3cuVOtW7cOdcxqbMxkgt+N9MzMTEVERCgiIqLGW7i0aNFC8+fPdzRcTf76179q3rx52rVrl/r27av58+dr4MCBQd8uAAAAAAAAADjp0ksvVXl5uRYvXqzu3btr9+7d+ve//60ff/xRktShQ4cQJzyRjZlM8PvWLtu3b1dubq68Xq/WrVun7du3+x7ff/+9iouLNWXKlGBm1WuvvaYZM2Zo9uzZ2rhxo/r27avzzz9fe/bsCep2AQAAAAAAAMBJhYWF+vjjj/XQQw9p1KhR6tKliwYOHKiZM2dq/PjxkqrfRuXYLVPefPNNjRo1SjExMerbt6/Wrl3rW+ecOXOUmZlZbTuPP/64unbt6vt91apVGjhwoFq2bKmEhAQNGzZMO3bs8D3/9NNPKy0tTc2bN1fPnj310ksvVVvf8bd2Wbdunfr166fo6GgNGDBAmzZtcqZAlvG7kd6lSxd17dpVVVVVGjBggLp06eJ7JCcnq2nTpsHMKUl67LHHdO211+rqq69W7969tWDBAsXExOiFF14I+rYBAAAAAAAANGwej0fr1q2Tx+MJ+rZatWqlVq1aaenSpSorK/N7uT//+c+67bbblJWVpR49emjixIk6cuSIX8seOXJEEyZM0IgRI7R582atXbtWv/vd7xQRESFJWrJkiW6++Wbdeuutcrvduu6663T11Vdr5cqVNa7v0KFDuuiii9S7d29t2LBBc+bM0W233eb3WMKJX430t956SxUVFb6f63oES3l5uTZs2KDRo0f7pjVp0kSjR4+u9qmLP0zsCE4yuQM7LVyzk9u8cM0errml8M1ObvM8Ho++2bZNJaWloY4SkJLSUrnd7rDLLYVv9nDNLR3N/s22bWG3j4brsSVcc0vhmz1cc0vhm53c5oVr9nDNLYVvdnKbFy7ZPR6PMjMzNWjQIGVmZurgwYM6fPiwKisrg7K9Zs2aadGiRVq8eLHvyvA77rij2ndV1uS2227TuHHj1KNHD919993asWOHcnJyqs1TWVlZY/bi4mIVFRXpoosuUlpamnr16qVJkyYpNTVVkvTII49o8uTJ+v3vf68ePXpoxowZ+vnPf65HHnmkxiwvv/yyqqqq9Pzzz+v000/XRRddpNtvv73eNbH5NeJXI33ChAk6cOCA7+faHpdccknQgu7bt0+VlZVq3759tent27ev9sWnP1VWVqbi4uJqD0kaNmyY1f8oP3X8DhwuuaXwzU5u88I1e7jmlsI3O7nN83g8Gjx4sG6ePl2TJ00KmwZpSWmprpg4UZMmT9YVEyeGTW4pfLOHa27paPbJkybp5unTNXjw4LDZR8P12BKuuaXwzR6uuaXwzU5u88I1e7jmlsI3O7nNC6fsbrdb2dnZkqTs7Gy9/fbb2rp1q77++uugNdMvvfRS/fDDD3rrrbc0duxYrVq1Sv3799eiRYtqXaZPnz6+n5OTkyXphFtff/31177sVVVVvumJiYmaPHmyzj//fF188cV64okntHPnTt/zW7du1bBhw6qta9iwYdq6dWuNWbZu3ao+ffooOjraN23IkCEnH3gNPB6Pzj333Hota4JfjfSqqiq1a9fO93Ntj2C9oOpr7ty5io+P9z1SUlIkSd9++63cbneI0/nn+B04XHJL4Zud3OaFa/ZwzS2Fb3Zym+d2u5WTmytJ+u7775V73FUOtsrNyVF+QYEkKb+gIGxyS+GbPVxzS0ezf/f995KknNzcsNlHw/XYEq65pfDNHq65pfDNTm7zwjV7uOaWwjc7uc0Lp+wul0sZGRmSpLS0NN9V2mVlZSoN4oUi0dHRGjNmjO666y6tWbNGkydP1uzZs2udPzIy0vfzsVuyHGuWN2nSRJWVlb5bxZSVlamkpKTa8n//+9+1du1aDR06VK+99pp69Oihzz77zOlhBcztdmt7Xl6oY9TK73ukh1rbtm3VtGlT7d69u9r03bt31/pNsTNnzlRRUZHvUfDfN3fdu3eXy+UKemYn/HQHzsjICJvcUvhmJ7d54Zo9XHNL4Zud3Oa5XC6lp6VJkjp36qS09PQQJ/JPWnq6Uv/7AXpqSkrY5JbCN3u45paOZu/cqZMkKT0tLWz20XA9toRrbil8s4drbil8s5PbvHDNHq65pfDNTm7zwil7TEyMsrKy9Pnnn2vTpk2Kj4+XJEVFRVW74jrYevfurcOHD9dr2aSkJO3Zs0fNmzeXdDT7li1bTpivX79+mjlzptasWSOXy6WXX35ZktSrVy99+umn1eb99NNP1bt37xq316tXL23evLnaBw31bcq7XC51+8mXotomwuv1ek8205NPPun3Cm+66aZTClSXQYMGaeDAgZo/f76ko5+0pKamaurUqfrTn/500uWLi4sVHx+vnTt31tp8t5HH45Hb7ZbL5VJMTEyo4wQkXLOT27xwzR6uuaXwzU5u8zz79in/f/5HXVwutUhICHUcv5WUlio3J0dp6elqYfCPXieEa/ZwzS1JJYWF2uF2K/XKKxXTtm2o4/gtXI8t4ZpbCt/s4ZpbCt/s5DYvXLOHa24pfLOT27xgZy8tLdX27dvVrVs3RxvelZWVKi0tVXR0tJo2berYeo/58ccfdfnll2vKlCnq06ePYmNjtX79ek2bNk3jxo3T888/r4iICC1ZskQTJkxQXl6eunXrpk2bNikzM1OSVFhYqNatW2vlypUaOXKktm7dqtNPP13333+/LrroIq1atUqzZ89WXFyc8vLytH37dj377LMaP368OnbsqG3btumKK67QvffeqxtuuEFLly7VL37xCz3xxBMaPXq03n77bf3hD3/Qhx9+qJEjR0pStUyHDh1St27dNHbsWM2cOVN5eXm6+eablZOTUy3nT9X177Xr22+VnJamoqIixcXFOV7zU+FXI71bt27+rSwiQt9+++0ph6rNa6+9pkmTJumZZ57RwIED9fjjj+sf//iHvvnmmxPunV6TY410G/8hAACwlscjrV4txcZKYdYcBfxWWiodPCgNHy6F2RtTAACAxi5YjfRgKysr05w5c7R8+XLl5uaqoqJCKSkpuvzyy3XHHXeoRYsWATfSJWnBggV64IEHtH//fl166aXq2bOnnn32WeXl5Wn37t26/vrr9fnnn+vHH39UcnKyJk2apNmzZ6tJk6M3L3n66af1yCOPqKCgQN26ddOdd96pq666ypf7p5mko1egX3/99dq6dat69+6tu+66S5deemm9GunFu3YpPjnZyv6tX410mzz11FOaN2+edu3apczMTD355JMaNGiQX8vSSAcAoB5opKMxoJEOAAAQtsK1kd5YhWsjvdmpLHysB3/spvYmTJ06VVOnTjW2PQAAAAAAAABA41avLxt9/vnn5XK5FB0drejoaLlcLi1cuNDpbAAAAAAAAAAAhFzAV6TPmjVLjz32mKZNm6YhQ4ZIktauXatbbrlF+fn5uueeexwPCQAAAAAAAABAqATcSH/66af13HPPaeLEib5p48ePV58+fTRt2jQa6QAAAAAAAACABiXgW7tUVFRowIABJ0w/88wzdeTIEUdCAQAAAAAAAEAgjn2fI+wWrv9OATfSr7rqKj399NMnTH/22Wd15ZVXOhIKAAAAAAAAAPzRtGlTSVJ5eXmIk8AfHo9HkhQZGRniJIEJ+NYu0tEvG12+fLkGDx4sSfr888+Vn5+v3/zmN5oxY4Zvvscee8yZlAAAAAAAAABQg2bNmikmJkZ79+5VZGSkmjQJ+NphGOD1euXxeLRnzx4lJCT4PgAJFwE30t1ut/r37y9Jys3NlSS1bdtWbdu2ldvt9s0XERHhUETUxOPxyO12y+VyKSYmJtRxJNmZyUk2js/GTE6xdWy25nKCjWOzMZOTbByfjZmcVFJaqtycHKWlp6tFdHSo40iyM5OTbByfjZmcZON+bGMmp9g6NltzOcHGsdmYyUk2js/GTE6ycXw2ZnKSjeOzMZNTnB5bRESEkpOTtX37du3YsaPe66mqqlJFRUWDbMbbNLaEhAR16NAh7F7jATfSV65cGYwcCIDH41FmZqays7OVkZGhrKyskL/YbMzkJBvHZ2Mmp9g6NltzOcHGsdmYyUk2js/GTE4qKS3VFRMnKr+gQKkpKXr5lVdC3kS1MZOTbByfjZmcZON+bGMmp9g6NltzOcHGsdmYyUk2js/GTE6ycXw2ZnKSjeOzMZNTgjW25s2bKyMjo963dykpKdEll1yivLw8de3aVUuWLFGLFi1OOZcNbBpbZGSkmjZtGpav8Yb10Uoj4Xa7lZ2dLUnKzs6u9j8BQsXGTE6ycXw2ZnKKrWOzNZcTbBybjZmcZOP4bMzkpNycHOUXFEiS8gsKlJuTE+JEdmZyko3jszGTk2zcj23M5BRbx2ZrLifYODYbMznJxvHZmMlJNo7PxkxOsnF8NmZySjDH1qRJE0VHR9frkZ2drY8++kg7duzQRx99pOzs7Hqvy7aHTWM7djuXcHyNB9xILy0t1bx583ThhRdqwIAB6t+/f7UHgs/lcikjI0OSlJGRIZfLFeJEdmZyko3jszGTU2wdm625nGDj2GzM5CQbx2djJielpacrNSVFkpSakqK09PQQJ7Izk5NsHJ+NmZxk435sYyan2Do2W3M5wcax2ZjJSTaOz8ZMTrJxfDZmcpKN47Mxk1NsHZutuZxg49hszHQyEV6v1xvIAldeeaWWL1+uyy67TO3btz/hXuizZ892NKCTiouLFR8fr6KiIsXFxYU6zimx8R5CNmZyko3jszGTU2wdm625nGDj2GzM5CQbx1djJo9HWr1aio2VwvwWGDbeG9vGTE6ycXw1ZiotlQ4elIYPlyzZH+srbI4tDYStY7M1lxNsHJuNmZxk4/hszOQkG8dnYyYn2Tg+GzM5xdax2ZrLCTaOraZMxbt2KT452cr+bcCN9Pj4eL3zzjsaNmxYsDIFTUNqpAMAYEwDaqQDtWpAjXQAAAAgXNncSA/41i6dOnVSbGxsMLIAAAAAAAAAAGCdgBvpjz76qP74xz9qx44dwcgDAAAAAAAAAIBVmgW6wIABA1RaWqru3bsrJiZGkZGR1Z7fv3+/Y+EAAAAAAAAAAAi1gBvpEydO1Pfff68HHnigxi8bBQAAAAAAAACgIQm4kb5mzRqtXbtWffv2DUYeAAAAAAAAAACsEvA90k877TSVlJQEIwsAAAAAAAAAANYJuJH+4IMP6tZbb9WqVav0448/qri4uNoDAAAAAAAAAICGJOBG+tixY7V27Vqde+65ateunVq3bq3WrVsrISFBrVu3DkZG+MHj8WjdunXyeDwNcns2oubmUXPzqLl51Ny8ktJSud1ulZSWNqht2cp0Dag5x5VQoObmUXPzqLlZ1Ns8am4eNTePmgcm4Hukr1y5stbnvvrqq1MKg/rxeDzKzMxUdna2MjIylJWVpZiYmAazPRtRc/OouXnU3Dxqbl5JaamumDhR+QUFSk1J0cuvvKIW0dFhvy1bma4BNee4EgrU3Dxqbh41N4t6m0fNzaPm5lHzwAV8RfqIESOqPfr3769t27bp9ttv18033xyMjDgJt9ut7OxsSVJ2drbcbneD2p6NqLl51Nw8am4eNTcvNydH+QUFkqT8ggLl5uQ0iG3ZynQNqDnHlVCg5uZRc/OouVnU2zxqbh41N4+aBy7gRvoxq1ev1qRJk5ScnKxHHnlE55xzjj777DMns8FPLpdLGRkZkqSMjAy5XK4GtT0bUXPzqLl51Nw8am5eWnq6UlNSJEmpKSlKS09vENuylekaUHOOK6FAzc2j5uZRc7Oot3nU3Dxqbh41D1yE1+v1+jvzrl27tGjRIj3//PMqLi7WL37xCy1YsEBffvmlevfuHcycjiguLlZ8fLyKiooUFxcX6jiO8ng8crvdcrlcRv5bhOnt2Yiam0fNzaPm5llZc49HWr1aio2VGuBtMUpKS5Wbk6O09PSg3/bD5LZsZboGfm+vtFQ6eFAaPlxqYMcfK48rDRw1N4+am0fNzaLe5lFz86i5eTbWvHjXLsUnJ1vZv/W7kX7xxRdr9erVGjdunK688kqNHTtWTZs2VWRkJI10AAAasgbeSAckNehGOgAAABAubG6k+/1lo++++65uuukm3XDDDb7L8AEAAAAAAAAAaOj8vkf6J598ooMHD+rMM8/UoEGD9NRTT2nfvn3BzAYAAAAAAAAAQMj53UgfPHiwnnvuOe3cuVPXXXedXn31VXXs2FFVVVX64IMPdPDgwWDmBAAAAAAAAAAgJPxupB/TsmVLTZkyRZ988om++uor3XrrrXrwwQfVrl07jR8/PhgZAQAAAAAAAAAImYAb6T/Vs2dPPfzww/ruu+/0yiuvOJUJAAAAAAAAAABrnFIj/ZimTZtqwoQJeuutt5xYHRzi8Xi0bt06eTweq9bVkDlVJ+rtP2puHjU3i2O5eSWlpXK73SopLbVqXQ0ZNTePY7l51Nwszp/mUXPzqLl51Nw8zp/mUfPaOdJIh308Ho8yMzM1aNAgZWZmntKL1sl1NWRO1Yl6+4+am0fNzeJYbl5JaamumDhRkyZP1hUTJ55SM9bJdTVk1Nw8juXmUXOzOH+aR83No+bmUXPzOH+aR83rRiO9gXK73crOzpYkZWdny+12W7GuhsypOlFv/1Fz86i5WRzLzcvNyVF+QYEkKb+gQLk5OVasqyGj5uZxLDePmpvF+dM8am4eNTePmpvH+dM8al43GukNlMvlUkZGhiQpIyNDLpfLinU1ZE7ViXr7j5qbR83N4lhuXlp6ulJTUiRJqSkpSktPt2JdDRk1N49juXnU3CzOn+ZRc/OouXnU3DzOn+ZR87pFeL1eb6hDmFJcXKz4+HgVFRUpLi4u1HGCzuPxyO12y+VyKSYmxpp1NWRO1Yl6+4+am0fNzbLiWO7xSKtXS7GxUnT0KWUIByWlpcrNyVFaerpanOJ4nVxXQ2ZFzUtLpYMHpeHDpUZwTOJYbh41N8uK82cjQ83No+bmUXPzOH+aF+qaF+/apfjkZCv7tzTSAQBA3RpZIx2NVCNrpAMAAAA2srmRHja3drn//vs1dOhQxcTEKCEhIdRxAAAAAAAAAACNRNg00svLy3X55ZfrhhtuCHWUsObxeLRu3bo6vy3Xn3ngP2pulr+1pObO4TVuHjU3r6S0VG63WyWlpac0D/xHzc3i/GkeNTeP86d51Nw8am4eNTeL86d51Pz/hE0j/e6779Ytt9yiM844I9RRwpbH41FmZqYGDRqkzMzMGl/Y/swD/1Fzs/ytJTV3Dq9x86i5eSWlpbpi4kRNmjxZV0ycWGPT1p954D9qbhbnT/OouXmcP82j5uZRc/OouVmcP82j5tWFTSMdp87tdis7O1uSlJ2dLbfbfcKnRTXNg/qj5mbVVktqHjz+1Jx6O4uam5ebk6P8ggJJUn5BgXJzck64ErqmeVB/1Nwszp/mUXPzOH+aR83N4/2nedTcLM6f5lHz6hp0I72srEzFxcXVHo2Zy+VSRkaGJCkjI0Pdu3c/4dOi4+dxuVyhjBz2qLlZNdWypk9Fqblz/Kl59+7dqbeDQlrzsrKjX8jYyB5pnTsrvVMnRUtK79RJndq21eRf/lLXTZ6syb/8pUoKC0+YJ61z55DnDudHSGpeVubMfhKGOH+aR83N428W86i5ebz/NI+am8X50zxqXl2E1+v1hmrjf/rTn/TQQw/VOc/WrVt12mmn+X5ftGiRpk+frsLCwpOuf86cObr77rtPmG7jt76acuxTf5fLJbfbrUGDBvme+/zzzzVw4MBq88TExIQwbcNAzc06vpbr1q2j5kHmT82Pvf6ptzOM17y8XFq3Tjp06BSTh6/SsjLl5eWpa9euysvL083Tp/uee+Lxx3Vaz57V5omOigpd2AYiJDVv1UoaOFBq3vzU1xVmOH+aR83N428W86i5ebz/NI+am8X50zzTNS/et0/xSUlW9m9D2kjfu3evfvzxxzrn6d69u5r/5M1MII30srIylf3k6qLi4mKlpKRY+Q8RCsc+QcrOzlZGRoaysrI4uAQZNTePmptHzc0zUvPycunIEWfXGaY8Ho8GDx6snNxcpael6bPPPuM1HmTGat6sWaNsoteEY7l51Nw8am4eNTeLeptHzc2j5uYFu+bFxcWKj4+3sn8b0kZ6fQTSSD+ezf8QocIndOZRc/OouXnU3Dxqbhb1No+am0fNzaPm5lFz86i5WdTbPGpuHjU3L5g1t7l/GzaN9Pz8fO3fv19vvfWW5s2bp48//liSlJ6erlatWvm1Dpv/IQAAAAAAAACgMbO5f9ss1AH8NWvWLC1evNj3e79+/SRJK1eu1MiRI/1ax7HPDBr7l44CAAAAAAAAgG2O9W1tvPY7bK5Id8K3336rtLS0UMcAAAAAAAAAANQiNzdX3bt3D3WMasLminQnJCYmSjp6m5j4+PgQpwHwU8e+DLigoMC6/7oDNHbsn4C92D8Be7F/AvZi/wTsVVRUpNTUVF8f1yaNqpHepEkTSVJ8fDwHSsBScXFx7J+Apdg/AXuxfwL2Yv8E7MX+CdjrWB/XJvYlAgAAAAAAAADAIjTSAQAAAAAAAACoQ6NqpEdFRWn27NmKiooKdRQAx2H/BOzF/gnYi/0TsBf7J2Av9k/AXjbvnxFer9cb6hAAAAAAAAAAANiqUV2RDgAAAAAAAABAoGikAwAAAAAAAABQBxrpAAAAAAAAAADUocE00levXq2LL75YHTt2VEREhJYuXXrSZVatWqX+/fsrKipK6enpWrRoUdBzAo1RoPvnqlWrFBERccJj165dZgIDjcjcuXN11llnKTY2Vu3atdOECRO0bdu2ky73+uuv67TTTlN0dLTOOOMMvfPOOwbSAo1LffbPRYsWnXD+jI6ONpQYaDyefvpp9enTR3FxcYqLi9OQIUP07rvv1rkM507AjED3T86dQOg8+OCDioiI0PTp0+ucz5ZzaINppB8+fFh9+/bVX//6V7/m3759u8aNG6dRo0YpKytL06dP1zXXXKP3338/yEmBxifQ/fOYbdu2aefOnb5Hu3btgpQQaLw++ugj3Xjjjfrss8/0wQcfqKKiQuedd54OHz5c6zJr1qzRxIkT9dvf/labNm3ShAkTNGHCBLndboPJgYavPvunJMXFxVU7f+7YscNQYqDx6Ny5sx588EFt2LBB69ev1znnnKOf/exn2rJlS43zc+4EzAl0/5Q4dwKh8MUXX+iZZ55Rnz596pzPpnNohNfr9RrfapBFRERoyZIlmjBhQq3z/PGPf9SyZcuqFf1Xv/qVCgsL9d577xlICTRO/uyfq1at0qhRo3TgwAElJCQYywZA2rt3r9q1a6ePPvpIw4cPr3GeX/7ylzp8+LD+9a9/+aYNHjxYmZmZWrBggamoQKPjz/65aNEiTZ8+XYWFhWbDAVBiYqLmzZun3/72tyc8x7kTCK269k/OnYB5hw4dUv/+/fW3v/1N9913nzIzM/X444/XOK9N59AGc0V6oNauXavRo0dXm3b++edr7dq1IUoE4HiZmZlKTk7WmDFj9Omnn4Y6DtAoFBUVSTr6ZqM2nEOB0PBn/5SOvjHp0qWLUlJSTnoFHoBTV1lZqVdffVWHDx/WkCFDapyHcycQGv7snxLnTsC0G2+8UePGjTvh3FgTm86hzYxv0RK7du1S+/btq01r3769iouLVVJSohYtWoQoGYDk5GQtWLBAAwYMUFlZmRYuXKiRI0fq888/V//+/UMdD2iwqqqqNH36dA0bNkwul6vW+Wo7h/I9BkDw+Lt/9uzZUy+88IL69OmjoqIiPfLIIxo6dKi2bNmizp07G0wMNHxfffWVhgwZotLSUrVq1UpLlixR7969a5yXcydgViD7J+dOwKxXX31VGzdu1BdffOHX/DadQxttIx2AvXr27KmePXv6fh86dKhyc3P1l7/8RS+99FIIkwEN24033ii3261PPvkk1FEAHMff/XPIkCHVrrgbOnSoevXqpWeeeUb33ntvsGMCjUrPnj2VlZWloqIivfHGG5o0aZI++uijWpt1AMwJZP/k3AmYU1BQoJtvvlkffPBBWH6pb6NtpHfo0EG7d++uNm337t2Ki4vjanTAQgMHDqS5BwTR1KlT9a9//UurV68+6ZU3tZ1DO3ToEMyIQKMVyP55vMjISPXr1085OTlBSgc0Xs2bN1d6erok6cwzz9QXX3yhJ554Qs8888wJ83LuBMwKZP88HudOIHg2bNigPXv2VLvbQGVlpVavXq2nnnpKZWVlatq0abVlbDqHNtp7pA8ZMkT//ve/q0374IMP6rxnFoDQycrKUnJycqhjAA2O1+vV1KlTtWTJEq1YsULdunU76TKcQwEz6rN/Hq+yslJfffUV51DAgKqqKpWVldX4HOdOILTq2j+Px7kTCJ5zzz1XX331lbKysnyPAQMG6Morr1RWVtYJTXTJrnNog7ki/dChQ9U+Ldy+fbuysrKUmJio1NRUzZw5U99//71efPFFSdL111+vp556Sn/4wx80ZcoUrVixQv/4xz+0bNmyUA0BaLAC3T8ff/xxdevWTaeffrpKS0u1cOFCrVixQsuXLw/VEIAG68Ybb9TLL7+sf/7zn4qNjfXdZy4+Pt73P7R+85vfqFOnTpo7d64k6eabb9aIESP06KOPaty4cXr11Ve1fv16PfvssyEbB9AQ1Wf/vOeeezR48GClp6ersLBQ8+bN044dO3TNNdeEbBxAQzRz5kxdcMEFSk1N1cGDB/Xyyy9r1apVev/99yVx7gRCKdD9k3MnYE5sbOwJ3/fTsmVLtWnTxjfd5nNog2mkr1+/XqNGjfL9PmPGDEnSpEmTtGjRIu3cuVP5+fm+57t166Zly5bplltu0RNPPKHOnTtr4cKFOv/8841nBxq6QPfP8vJy3Xrrrfr+++8VExOjPn366MMPP6y2DgDOePrppyVJI0eOrDb973//uyZPnixJys/PV5Mm//ef2IYOHaqXX35Zd955p+644w5lZGRo6dKldX4BIoDA1Wf/PHDggK699lrt2rVLrVu31plnnqk1a9Zwz2bAYXv27NFvfvMb7dy5U/Hx8erTp4/ef/99jRkzRhLnTiCUAt0/OXcCdrH5HBrh9Xq9xrcKAAAAAAAAAECYaLT3SAcAAAAAAAAAwB800gEAAAAAAAAAqAONdAAAAAAAAAAA6kAjHQAAAAAAAACAOtBIBwAAAAAAAACgDjTSAQAAAAAAAACoA410AAAAAAAAAADqQCMdAAAAAAAAAIA60EgHAAAAHDZ58mRNmDAhZNu/6qqr9MADDxjZ1p/+9CdNmzbNyLYAAACAUInwer3eUIcAAAAAwkVERESdz8+ePVu33HKLvF6vEhISzIT6iS+//FLnnHOOduzYoVatWgV9e/v27VP37t2VlZWl7t27B317AAAAQCjQSAcAAAACsGvXLt/Pr732mmbNmqVt27b5prVq1cpIA7s211xzjZo1a6YFCxYY2+bll1+url27at68eca2CQAAAJjErV0AAACAAHTo0MH3iI+PV0RERLVprVq1OuHWLiNHjtS0adM0ffp0tW7dWu3bt9dzzz2nw4cP6+qrr1ZsbKzS09P17rvvVtuW2+3WBRdcoFatWql9+/a66qqrtG/fvlqzVVZW6o033tDFF19cbfrf/vY3ZWRkKDo6Wu3bt9dll13me66qqkpz585Vt27d1KJFC/Xt21dvvPFGteW3bNmiiy66SHFxcYqNjdXZZ5+t3Nxc3/MXX3yxXn311fqUEwAAAAgLNNIBAAAAAxYvXqy2bdtq3bp1mjZtmm644QZdfvnlGjp0qDZu3KjzzjtPV111lTwejySpsLBQ55xzjvr166f169frvffe0+7du/WLX/yi1m1s3rxZRUVFGjBggG/a+vXrddNNN+mee+7Rtm3b9N5772n48OG+5+fOnasXX3xRCxYs0JYtW3TLLbfo17/+tT766CNJ0vfff6/hw4crKipKK1as0IYNGzRlyhQdOXLEt46BAwfqu+++U15ensNVAwAAAOzArV0AAACAelq0aJGmT5+uwsLCatMnT56swsJCLV26VNLRK9IrKyv18ccfSzp65Xh8fLx+/vOf68UXX5R09JYxycnJWrt2rQYPHqz77rtPH3/8sd5//33fer/77julpKRo27Zt6tGjxwl5li5dqssuu0wVFRW+e7m/+eabuvrqq/Xdd98pNja22vxlZWVKTEzUhx9+qCFDhvimX3PNNfJ4PHr55Zd1xx136NVXX9W2bdsUGRlZYx2Ki4sVHx+vVatWacSIEYEVEQAAAAgDzUIdAAAAAGgM+vTp4/u5adOmatOmjc444wzftPbt20uS9uzZI+nol4auXLmyxvut5+bm1thILykpUVRUVLUvRB0zZoy6dOmi7t27a+zYsRo7dqwuueQSxcTEKCcnRx6PR2PGjKm2nvLycvXr10+SlJWVpbPPPrvWJroktWjRQpJ8V9MDAAAADQ2NdAAAAMCA4xvRERER1aYda35XVVVJkg4dOqSLL75YDz300AnrSk5OrnEbbdu2lcfjUXl5uZo3by5Jio2N1caNG7Vq1SotX75cs2bN0pw5c/TFF1/o0KFDkqRly5apU6dO1dYVFRUl6f+a5HXZv3+/JCkpKemk8wIAAADhiEY6AAAAYKH+/fvrf//3f9W1a1c1a+bfn+2ZmZmSpK+//tr3syQ1a9ZMo0eP1ujRozV79mwlJCRoxYoVGjNmjKKiopSfn1/rLVn69OmjxYsXq6Kiotar0t1utyIjI3X66acHNEYAAAAgXPBlowAAAICFbrzxRu3fv18TJ07UF198odzcXL3//vu6+uqrVVlZWeMySUlJ6t+/vz755BPftH/961968sknlZWVpR07dujFF19UVVWVevbsqdjYWN1222265ZZbtHjxYuXm5mrjxo2aP3++Fi9eLEmaOnWqiouL9atf/Urr169Xdna2XnrpJW3bts23jY8//lhnn322X1evAwAAAOGIRjoAAABgoY4dO+rTTz9VZWWlzjvvPJ1xxhmaPn26EhIS1KRJ7X/GX3PNNfqf//kf3+8JCQl68803dc4556hXr15asGCBXnnlFd/V4/fee6/uuusuzZ07V7169dLYsWO1bNkydevWTZLUpk0brVixQocOHdKIESN05pln6rnnnqt2dfqrr76qa6+9NkiVAAAAAEIvwuv1ekMdAgAAAIAzSkpK1LNnT7322msaMmRI0Lf37rvv6tZbb9XmzZv9vgUNAAAAEG64Ih0AAABoQFq0aKEXX3xR+/btM7K9w4cP6+9//ztNdAAAADRoXJEOAAAAAAAAAEAduCIdAAAAAAAAAIA60EgHAAAAAAAAAKAONNIBAAAAAAAAAKgDjXQAAAAAAAAAAOpAIx0AAAAAAAAAgDrQSAcAAAAAAAAAoA400gEAAAAAAAAAqAONdAAAAAAAAAAA6kAjHQAAAAAAAACAOtBIBwAAAAAAAACgDv8f71KcY7QKNGgAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "signal1.plot(xlim=(1, 4), highlight=[(2, 2.4), (4, 4.1)], fmt=\"k.\", label=\"Sinusoid\")" ] }, { "cell_type": "code", "execution_count": null, "id": "e76b2f36-a1c6-4280-8e14-37843135a29b", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Modusa", "language": "python", "name": "modusa-3.12" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.0" } }, "nbformat": 4, "nbformat_minor": 5 }